W^2-22=7-10w^2

Simple and best practice solution for W^2-22=7-10w^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for W^2-22=7-10w^2 equation:



^2-22=7-10W^2
We move all terms to the left:
^2-22-(7-10W^2)=0
We add all the numbers together, and all the variables
-(7-10W^2)=0
We get rid of parentheses
10W^2-7=0
a = 10; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·10·(-7)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*10}=\frac{0-2\sqrt{70}}{20} =-\frac{2\sqrt{70}}{20} =-\frac{\sqrt{70}}{10} $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*10}=\frac{0+2\sqrt{70}}{20} =\frac{2\sqrt{70}}{20} =\frac{\sqrt{70}}{10} $

See similar equations:

| -20+7r=4(r-8) | | 3a+15=-19 | | 6x−48=−2x | | 6=1-2n+n | | 7b-30=4(2b-8)+4 | | 7(x+1)-4=24 | | 9={v+4}{v+12} | | 8–7x=22 | | 17^6x=11^x-8 | | 40/42=25/x | | 44/35=41/x | | 30=5*x+1) | | 8+b-4=5 | | 4.8–7x=22 | | -8x+5+13=-25 | | 13x+4=x-2 | | 1/4x=x-6 | | 3x+9+5x=71 | | -42+7x=42 | | x=-401.3/20 | | 2(2t+4)=3/4(22-8t) | | 4x-7=-28 | | 4x-43=29 | | 7(9+k)=84+2(k+6) | | 12x+42=222 | | q/6=-3 | | 329.7=18.14x | | {3}{7}m=6 | | 19y+28=123 | | X+0.01x=228 | | 127=7d+8 | | y-3.2=-7 |

Equations solver categories